A review of some a posteriori error estimates for adaptive finite element methods

نویسنده

  • Karel Segeth
چکیده

Recently, the adaptive finite element methods have gained a very important position among numerical procedures for solving ordinary as well as partial differential equations arising from various technical applications. While the classical a posteriori error estimates are oriented to the use in h-methods the contemporary higher order hp-methods usually require new approaches in a posteriori error estimation. We present a brief review of some error estimation procedures for some particular both linear and nonlinear differential problems with special regards to the needs of the hp-method. © 2009 IMACS. Published by Elsevier B.V. All rights reserved. MSC: 65M15; 65M60; 65N15; 65N30 PACS: 02.60.Lj; 02.70.Dh

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Adaptive Finite Element Methods for Conservation Laws Based on a Posteriori Error Estimates

We prove a posteriori error estimates for a nite element method for systems of strictly hyperbolic conservation laws in one space dimension, and design corresponding adaptive methods. The proof of the a posteriori error estimates is based on a strong stability estimate for an associated dual problem, together with the Galerkin orthogonalityof the nite element method. The strong stability estima...

متن کامل

Adaptive Finite Element Methods for Multiphysics Problems Adaptive Finite Element Methods for Multiphysics Problems

In this thesis we develop and evaluate the performance of adaptive finite element methods for multiphysics problems. In particular, we propose a methodology for deriving computable error estimates when solving unidirectionally coupled multiphysics problems using segregated finite element solvers. The error estimates are of a posteriori type and are derived using the standard framework of dual w...

متن کامل

A Posteriori Error Estimates for Finite Element Approximations of the Cahn-hilliard Equation and the Hele-shaw Flow

This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + ∆ ` ε∆u− ε−1f(u) ́ = 0. It is shown that the a posteriori error bounds depends on ε−1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct an adaptive algorithm f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2010